Stochastic optimization Markov Chain Monte Carlo

Ethan Fetaya

Weizmann Institute of Science

・ロト ・ 日 ・ モー・ モー・ うへぐ

Motivation

- Markov chains
- Stationary distribution
- Mixing time

2 Algorithms

- Metropolis-Hastings
- Simulated Annealing
- Rejectionless Sampling

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

-Motivation

1 Introduction

Motivation

- Markov chains
- Stationary distribution
- Mixing time

2 Algorithms

- Metropolis-Hastings
- Simulated Annealing
- Rejectionless Sampling

$\operatorname{Stochastic}$	Optimization

-Motivation

Assume we have a discrete/non-convex function f(x) we wish to optimize.

Stochastic	Optimization
Introduc	ction

-Motivation

Assume we have a discrete/non-convex function f(x) we wish to optimize.

Example: knapsack problem.

Stc	chastic Optimization	
Ľ	ntroduction	

Example: knapsack problem. Given m items with weights $w = (w_1, ..., w_m)$ and values $v = (v_1, ..., v_m)$ Find the subset with maximal value under a weight constraint.

ション ふゆ マ キャット マックシン

Stochastic	Optimization
Introdu	ction

Example: knapsack problem. Given m items with weights $w = (w_1, ..., w_m)$ and values $v = (v_1, ..., v_m)$ Find the subset with maximal value under a weight constraint.

 $\max v^T z$ s.t. $w^T z \le C$ $z_i \in \{0, 1\}$

ション ふゆ マ キャット マックシン

$\operatorname{Stochastic}$	Optimization
Introduc	ction

Example: knapsack problem. Given m items with weights $w = (w_1, ..., w_m)$ and values $v = (v_1, ..., v_m)$ Find the subset with maximal value under a weight constraint.

$$\max v^T z$$

s.t. $w^T z \le C$
 $z_i \in \{0, 1\}$

ション ふゆ マ キャット マックシン

These problems are in general NP-hard.

$\operatorname{Stochastic}$	Optimization
Introduc	tion

Example: knapsack problem. Given m items with weights $w = (w_1, ..., w_m)$ and values $v = (v_1, ..., v_m)$ Find the subset with maximal value under a weight constraint.

$$\max v^T z$$

s.t. $w^T z \le C$
 $z_i \in \{0, 1\}$

These problems are in general NP-hard.

For simplicity we will assume the search space X is finite, but our results can be generalized easily.

(日) (日) (日) (日) (日) (日) (日) (日)

CL 1	0			
Stochastic	O_{D}	tım	1Za	tion
	- P			

-Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stochastic	Optimization

-Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

ション ふゆ マ キャット マックシン

What probability distribution should we use?

|--|

-Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

ション ふゆ マ キャット マックシン

What probability distribution should we use?

Simple (bad) distribution: pick x uniformly from X.

|--|

- Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

What probability distribution should we use?

Simple (bad) distribution: pick x uniformly from X. Problem - we might spend most of the time sampling junk.

ション ふゆ マ キャット マックシン

- Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

What probability distribution should we use?

Simple (bad) distribution: pick x uniformly from X. Problem - we might spend most of the time sampling junk.

Great distribution: Softmax $p(x) = e^{f(x)/T}/Z$, where T is a parameter and $Z = \sum_{x \in X} e^{f(x)/T}$ is the partition function.

(日) (日) (日) (日) (日) (日) (日) (日)

- Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

What probability distribution should we use?

Simple (bad) distribution: pick x uniformly from X. Problem - we might spend most of the time sampling junk.

Great distribution: Softmax $p(x) = e^{f(x)/T}/Z$, where T is a parameter and $Z = \sum_{x \in X} e^{f(x)/T}$ is the partition function. Problem - how can you sample from p(x) when you cannot compute Z?

(日) (日) (日) (日) (日) (日) (日) (日)

- Motivation

Stochastic approach - pick items randomly $x_1, ..., x_N$ from your search space X, and return $\arg \max_{i \in [N]} f(x_i)$.

What probability distribution should we use?

Simple (bad) distribution: pick x uniformly from X. Problem - we might spend most of the time sampling junk.

Great distribution: Softmax $p(x) = e^{f(x)/T}/Z$, where T is a parameter and $Z = \sum_{x \in X} e^{f(x)/T}$ is the partition function. Problem - how can you sample from p(x) when you cannot compute Z?

To solve this problem we use MCMC (Markov chain Monte carlo) sampling.

-Markov chains

1 Introduction

Motivation

Markov chains

- Stationary distribution
- Mixing time

2 Algorithms

- Metropolis-Hastings
- Simulated Annealing
- Rejectionless Sampling

-Markov chains

Definition 1.1 (Markov chain)

A series of random variables $X_1, ..., X_t, ...$, is a Markov chain if $P(X_{i+1} = y | X_i, ..., X_1) = P(X_{i+1} = y | X_i)$.

ション ふゆ マ キャット マックシン

-Markov chains

Definition 1.1 (Markov chain)

A series of random variables $X_1, ..., X_t, ...$, is a Markov chain if $P(X_{i+1} = y | X_i, ..., X_1) = P(X_{i+1} = y | X_i)$.

Example: random walk $X_{i+1} = X_i + \Delta x_i$ where Δx_i are i.i.d is a Markov chain.

うして ふゆう ふほう ふほう ふしつ

-Markov chains

Definition 1.1 (Markov chain)

A series of random variables $X_1, ..., X_t, ...$, is a Markov chain if $P(X_{i+1} = y | X_i, ..., X_1) = P(X_{i+1} = y | X_i).$

Example: random walk $X_{i+1} = X_i + \Delta x_i$ where Δx_i are i.i.d is a Markov chain.

Example: X_{i+1} is an element of [N] not seem before. This is not a Markov chain.

うして ふゆう ふほう ふほう ふしつ

-Markov chains

Definition 1.1 (Markov chain)

A series of random variables $X_1, ..., X_t, ...$, is a Markov chain if $P(X_{i+1} = y | X_i, ..., X_1) = P(X_{i+1} = y | X_i).$

Example: random walk $X_{i+1} = X_i + \Delta x_i$ where Δx_i are i.i.d is a Markov chain.

Example: X_{i+1} is an element of [N] not seem before. This is not a Markov chain.

We will consider *homogeneous* Markov chains where $P(X_{i+1} = y|X_i)$ does not depend on *i*.

うして ふぼう ふほう ふほう ふしつ

∟_{Markov} chains

We will use matrix notation:

Introduction	Stochastic Optimization

We will use matrix notation: Define distributions as as a row vector π such that $\pi(x)$ is the probability of x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Ste	ochastic Optimization
L	Introduction
	Manhan abaina

We will use matrix notation: Define distributions as as a row vector π such that $\pi(x)$ is the probability of x. We can think of a Markov chain as a series $\pi_0, \pi_1, ..., \pi_n, ...$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Stochastic Optimization	

-Markov chains

We will use matrix notation: Define distributions as as a row vector π such that $\pi(x)$ is the probability of x. We can think of a Markov chain as a series $\pi_0, \pi_1, ..., \pi_n, ...$

うして ふゆう ふほう ふほう ふしつ

Define the transition matrix P such that $P_{ij} = P_{i \to j} = P(X_{n+1} = j | X_n = i).$

-Markov chains

We will use matrix notation: Define distributions as as a row vector π such that $\pi(x)$ is the probability of x. We can think of a Markov chain as a series $\pi_0, \pi_1, ..., \pi_n, ...$

ション ふゆ マ キャット マックタン

Define the transition matrix P such that $P_{ij} = P_{i \to j} = P(X_{n+1} = j | X_n = i).$

We then have $\pi_{n+1} = \pi_n P$, and therefore $\pi_n = \pi_0 P^n$.

We will use matrix notation: Define distributions as as a row vector π such that $\pi(x)$ is the probability of x. We can think of a Markov chain as a series $\pi_0, \pi_1, ..., \pi_n, ...$

Define the transition matrix P such that $P_{ij} = P_{i \to j} = P(X_{n+1} = j | X_n = i).$

We then have $\pi_{n+1} = \pi_n P$, and therefore $\pi_n = \pi_0 P^n$.

$$\pi_{n+1}(j) = P(X_{n+1} = j) = \sum_{i} P(X_{n+1} = j | X_n = i) P(X_n = i)$$

ション ふゆ マ キャット マックタン

└─Markov chains

We will use matrix notation: Define distributions as as a row vector π such that $\pi(x)$ is the probability of x. We can think of a Markov chain as a series $\pi_0, \pi_1, ..., \pi_n, ...$

Define the transition matrix P such that $P_{ij} = P_{i \to j} = P(X_{n+1} = j | X_n = i).$

We then have $\pi_{n+1} = \pi_n P$, and therefore $\pi_n = \pi_0 P^n$.

$$\pi_{n+1}(j) = P(X_{n+1} = j) = \sum_{i} P(X_{n+1} = j | X_n = i) P(X_n = i)$$
$$= \sum_{i} P_{ij} \pi_n(i) = (\pi_n P)(j).$$

ション ふゆ マ キャット マックタン

-Stationary distribution

1 Introduction

- Motivation
- Markov chains

Stationary distribution

Mixing time

2 Algorithms

- Metropolis-Hastings
- Simulated Annealing
- Rejectionless Sampling

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

-Stationary distribution

For well-behaved Markov chains the nice property holds -

-Stationary distribution

For well-behaved Markov chains the nice property holds - $\pi_n = \pi_0 P^n \to \pi^*$ independent of π_0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

For well-behaved Markov chains the nice property holds - $\pi_n = \pi_0 P^n \to \pi^*$ independent of π_0 .

Definition 1.2 (Irreducibility)

A Markov chain is called irreducible if for all i, j there is a k such that $P_{ij}^k > 0$, i.e. you can get to any state from any state.

うして ふゆう ふほう ふほう ふしつ

For well-behaved Markov chains the nice property holds - $\pi_n = \pi_0 P^n \to \pi^*$ independent of π_0 .

Definition 1.2 (Irreducibility)

A Markov chain is called irreducible if for all i, j there is a k such that $P_{ij}^k > 0$, i.e. you can get to any state from any state.

Definition 1.3 (Aperiodicity)

A Markov chain is called aperiodical if there exist a k such that $P_{ij}^k > 0$ for all i, j.

うして ふゆう ふほう ふほう ふしつ

For well-behaved Markov chains the nice property holds - $\pi_n = \pi_0 P^n \to \pi^*$ independent of π_0 .

Definition 1.2 (Irreducibility)

A Markov chain is called irreducible if for all i, j there is a k such that $P_{ij}^k > 0$, i.e. you can get to any state from any state.

Definition 1.3 (Aperiodicity)

A Markov chain is called a periodical if there exist a k such that $P_{ij}^k > 0$ for all i,j.

A simple trick to turn a Markov chain aperiodical is to have $P_{ii} > 0$.

・ロト ・西ト ・田ト ・田ト ・日ト

-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Proof sketch.

Since P is row-stochastic, P1 = 1.
-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

Proof sketch.

Since P is row-stochastic, $P\mathbb{1} = \mathbb{1}$. Therefore there exits π^* such that $\pi^* P = \pi^*$.

-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

Proof sketch.

Since P is row-stochastic, $P\mathbb{1} = \mathbb{1}$. Therefore there exits π^* such that $\pi^* P = \pi^*$. From Perron-Frobenius the vector is positive, unique (up to scalar) and each other eigenvalue λ , we have $|\lambda| < 1$.

うして ふゆう ふほう ふほう ふしつ

-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

Proof sketch.

Since P is row-stochastic, P1 = 1. Therefore there exits π^* such that $\pi^*P = \pi^*$. From Perron-Frobenius the vector is positive, unique (up to scalar) and each other eigenvalue λ , we have $|\lambda| < 1$. P may not have a eigen-decomposition but this is enough (with some work) to prove convergence.

うして ふゆう ふほう ふほう ふしつ

-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

Proof sketch.

Since P is row-stochastic, P1 = 1. Therefore there exits π^* such that $\pi^*P = \pi^*$. From Perron-Frobenius the vector is positive, unique (up to scalar) and each other eigenvalue λ , we have $|\lambda| < 1$. P may not have a eigen-decomposition but this is enough (with some work) to prove convergence.

うして ふゆう ふほう ふほう ふしつ

How is this helpful?

-Stationary distribution

Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for any distribution π_0 we have $\pi_n \to \pi^*$ where π^* is the unique solution to $\pi = \pi P$.

Proof sketch.

Since P is row-stochastic, P1 = 1. Therefore there exits π^* such that $\pi^*P = \pi^*$. From Perron-Frobenius the vector is positive, unique (up to scalar) and each other eigenvalue λ , we have $|\lambda| < 1$. P may not have a eigen-decomposition but this is enough (with some work) to prove convergence.

How is this helpful? We will show how to build a Markov chain with any π^* , then sampling from π^* is easy, just go over the chain to convergence (hopefully fast...).

Stationary distribution

Our interest is in *reversible* Markov chain where detailed balance holds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

-Stationary distribution

Our interest is in *reversible* Markov chain where detailed balance holds.

ション ふゆ マ キャット マックシン

Lemma 1.5 (detailed balance)

If the detailed balance equation $\pi_i P_{ij} = \pi_j P_{ji}$ holds then $\pi = \pi^*$.

Proof - $(\pi P)(j) = \sum_{i} \pi(i) P_{ij} = \sum_{i} \pi(j) P_{ji} = \pi(j).$

Our interest is in *reversible* Markov chain where detailed balance holds.

うして ふゆう ふほう ふほう ふしつ

Lemma 1.5 (detailed balance)

If the detailed balance equation $\pi_i P_{ij} = \pi_j P_{ji}$ holds then $\pi = \pi^*$.

Proof -
$$(\pi P)(j) = \sum_{i} \pi(i) P_{ij} = \sum_{i} \pi(j) P_{ji} = \pi(j).$$

So in order to have π steady state we need $\frac{P_{ij}}{P_{ji}} = \frac{\pi_j}{\pi_i}$

Our interest is in *reversible* Markov chain where detailed balance holds.

Lemma 1.5 (detailed balance)

If the detailed balance equation $\pi_i P_{ij} = \pi_j P_{ji}$ holds then $\pi = \pi^*$.

Proof -
$$(\pi P)(j) = \sum_{i} \pi(i) P_{ij} = \sum_{i} \pi(j) P_{ji} = \pi(j).$$

So in order to have π steady state we need $\frac{P_{ij}}{P_{ji}} = \frac{\pi_j}{\pi_i}$

One can show that there exists a symmetric postive matrix A, such that P is A after row-normalization.

うして ふゆう ふほう ふほう ふしつ

-Mixing time

1 Introduction

Motivation

- Markov chains
- Stationary distribution
- Mixing time

2 Algorithms

- Metropolis-Hastings
- Simulated Annealing
- Rejectionless Sampling

-Mixing time

How fast does a Markov chain converge? There is a huge literature on mixing time, we will state one simple result.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

How fast does a Markov chain converge? There is a huge literature on mixing time, we will state one simple result.

The mixing time $t_{mix}(\epsilon)$ is the minimal time such that no mater where we started, for $n \ge t_{mix}(\epsilon)$ we have $||\pi_n - \pi^*||_{TV} = ||\pi_n - \pi^*||_1 \le \epsilon$

ション ふゆ マ キャット マックシン

-Mixing time

How fast does a Markov chain converge? There is a huge literature on mixing time, we will state one simple result.

The mixing time $t_{mix}(\epsilon)$ is the minimal time such that no mater where we started, for $n \ge t_{mix}(\epsilon)$ we have $||\pi_n - \pi^*||_{TV} = ||\pi_n - \pi^*||_1 \le \epsilon$

(日) (日) (日) (日) (日) (日) (日) (日)

If P is reversibel it has an eigen-decomposition with $1 = \lambda_1 > \lambda_2 \ge ... \ge \lambda_{|X|} > -1$. Define $\lambda_* = \max\{\lambda_2, |\lambda_{|X|}|\}$.

-Mixing time

How fast does a Markov chain converge? There is a huge literature on mixing time, we will state one simple result.

The mixing time $t_{mix}(\epsilon)$ is the minimal time such that no mater where we started, for $n \ge t_{mix}(\epsilon)$ we have $||\pi_n - \pi^*||_{TV} = ||\pi_n - \pi^*||_1 \le \epsilon$

(日) (日) (日) (日) (日) (日) (日) (日)

If P is reversibel it has an eigen-decomposition with $1 = \lambda_1 > \lambda_2 \ge ... \ge \lambda_{|X|} > -1$. Define $\lambda_* = \max\{\lambda_2, |\lambda_{|X|}|\}$.

-Mixing time

Theorem 1.6 (Mixing time)

If a Markov chain P has all previous requirements and is reversible then

$$t_{mix}(\epsilon) \le \log\left(\frac{1}{\epsilon \min_i \pi^*(i)}\right) \frac{1}{1 - \lambda_*}$$
$$t_{mix}(\epsilon) \ge \log\left(\frac{1}{2\epsilon}\right) \frac{\lambda_*}{1 - \lambda_*}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

-Mixing time

Theorem 1.6 (Mixing time)

If a Markov chain P has all previous requirements and is reversible then

$$t_{mix}(\epsilon) \le \log\left(\frac{1}{\epsilon \min_i \pi^*(i)}\right) \frac{1}{1 - \lambda_*}$$
$$t_{mix}(\epsilon) \ge \log\left(\frac{1}{2\epsilon}\right) \frac{\lambda_*}{1 - \lambda_*}$$

ション ふゆ マ キャット マックシン

This shows that the *spectral gap* controls the rate of convergence.

1 Introduction

Motivation

- Markov chains
- Stationary distribution
- Mixing time

2 Algorithms

Metropolis-Hastings

- Simulated Annealing
- Rejectionless Sampling

Stochastic Optimization

- Algorithms
 - └_Metropolis-Hastings

-Metropolis-Hastings

The Metropolis-Hastings algorithms allows us to build a Markov chain with a desired stationary distribution. The algorithm requires:

-Metropolis-Hastings

The Metropolis-Hastings algorithms allows us to build a Markov chain with a desired stationary distribution. The algorithm requires:

ション ふゆ マ キャット マックシン

1) A desired distribution known up to a constant, e.g. $\pi(x) = \exp(f(x)/T)/Z$.

The Metropolis-Hastings algorithms allows us to build a Markov chain with a desired stationary distribution. The algorithm requires:

1) A desired distribution known up to a constant, e.g. $\pi(x) = \exp(f(x)/T)/Z$.

2) A Markov chain $Q(i \rightarrow j)$ called the *proposal distribution*. This is where we should look around state *i*.

うして ふゆう ふほう ふほう ふしつ

The Metropolis-Hastings algorithms allows us to build a Markov chain with a desired stationary distribution. The algorithm requires:

1) A desired distribution known up to a constant, e.g. $\pi(x) = \exp(f(x)/T)/Z$.

2) A Markov chain $Q(i \rightarrow j)$ called the *proposal distribution*. This is where we should look around state *i*. For example in the knapsack problem it could we uniform over all possibilities of switching a single element Z_k .

(日) (日) (日) (日) (日) (日) (日) (日)

The Metropolis-Hastings algorithms allows us to build a Markov chain with a desired stationary distribution. The algorithm requires:

1) A desired distribution known up to a constant, e.g. $\pi(x) = \exp(f(x)/T)/Z$.

2) A Markov chain $Q(i \to j)$ called the *proposal distribution*. This is where we should look around state *i*. For example in the knapsack problem it could we uniform over all possibilities of switching a single element Z_k . For continuous state spaces $Q(x_0 \to x) = \mathcal{N}(x_0, \sigma I)$ is a common choice.

(日) (日) (日) (日) (日) (日) (日) (日)

-Metropolis-Hastings

Algorithm Metropolis-Hastings

Input: x_0 , π and Q. **for** i = 0 : N **do** Pick proposition x_* from distribution $Q(x_i \to \cdot)$ $\alpha = \min\{1, \frac{\pi(x_*)Q(x_* \to x_i)}{\pi(x_i)Q(x_i \to x_*)}\}$ With probability α set $x_{i+1} = x_*$, else $x_{i+1} = x_i$ **end for**

ション ふゆ マ キャット マックシン

Algorithm Metropolis-Hastings

Input: x_0 , π and Q. **for** i = 0 : N **do** Pick proposition x_* from distribution $Q(x_i \to \cdot)$ $\alpha = \min\{1, \frac{\pi(x_*)Q(x_* \to x_i)}{\pi(x_i)Q(x_i \to x_*)}\}$ With probability α set $x_{i+1} = x_*$, else $x_{i+1} = x_i$ **end for**

Notice we only ratio of π so the unknown constant is eliminated.

うして ふゆう ふほう ふほう ふしつ

Algorithm Metropolis-Hastings

Input: x_0 , π and Q. **for** i = 0 : N **do** Pick proposition x_* from distribution $Q(x_i \to \cdot)$ $\alpha = \min\{1, \frac{\pi(x_*)Q(x_* \to x_i)}{\pi(x_i)Q(x_i \to x_*)}\}$ With probability α set $x_{i+1} = x_*$, else $x_{i+1} = x_i$ **end for**

Notice we only ratio of π so the unknown constant is eliminated.

うして ふゆう ふほう ふほう ふしつ

For example if Q is symmetric and $\pi \propto \exp(f(x)/T)$ then if $f(x_*) \geq f(x_i)$ we always move to x_* ,

Algorithm Metropolis-Hastings

Input: x_0 , π and Q. **for** i = 0 : N **do** Pick proposition x_* from distribution $Q(x_i \to \cdot)$ $\alpha = \min\{1, \frac{\pi(x_*)Q(x_* \to x_i)}{\pi(x_i)Q(x_i \to x_*)}\}$ With probability α set $x_{i+1} = x_*$, else $x_{i+1} = x_i$ **end for**

Notice we only ratio of π so the unknown constant is eliminated.

For example if Q is symmetric and $\pi \propto \exp(f(x)/T)$ then if $f(x_*) \geq f(x_i)$ we always move to x_* , else we move with probability $\exp(-|\Delta f|/T)$

Stochastic Optimization

Algorithms

L_{Metropolis-Hastings}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Theorem 2.1

Metropolis-Hastings

Theorem 2.1

The MH algorithm defines a Markov chain P with stationary distribution $\pi^* = \pi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

-Metropolis-Hastings

Theorem 2.1

The MH algorithm defines a Markov chain P with stationary distribution $\pi^* = \pi$.

ション ふゆ く は く は く む く む く し く

Proof.

We will show P has detailed balance:

-Metropolis-Hastings

Theorem 2.1

The MH algorithm defines a Markov chain P with stationary distribution $\pi^* = \pi$.

Proof.

We will show P has detailed balance: Assume w.l.o.g $\pi_j Q_{j \to i} \leq \pi_i Q_{i \to j}$.

$$\pi_i P_{i \to j} = \pi_i Q_{i \to j} \min\{1, \frac{\pi_j Q_{j \to i}}{\pi_i Q_{i \to j}}\}$$

-Metropolis-Hastings

Theorem 2.1

The MH algorithm defines a Markov chain P with stationary distribution $\pi^* = \pi$.

Proof.

We will show P has detailed balance: Assume w.l.o.g $\pi_j Q_{j \to i} \leq \pi_i Q_{i \to j}$.

$$\pi_i P_{i \to j} = \pi_i Q_{i \to j} \min\{1, \frac{\pi_j Q_{j \to i}}{\pi_i Q_{i \to j}}\} = \pi_i Q_{i \to j} \frac{\pi_j Q_{j \to i}}{\pi_i Q_{i \to j}}$$

-Metropolis-Hastings

Theorem 2.1

The MH algorithm defines a Markov chain P with stationary distribution $\pi^* = \pi$.

Proof.

We will show P has detailed balance: Assume w.l.o.g $\pi_j Q_{j \to i} \leq \pi_i Q_{i \to j}$.

$$\begin{aligned} \pi_i P_{i \to j} &= \pi_i Q_{i \to j} \min\{1, \frac{\pi_j Q_{j \to i}}{\pi_i Q_{i \to j}}\} = \pi_i Q_{i \to j} \frac{\pi_j Q_{j \to i}}{\pi_i Q_{i \to j}} \\ &= \pi_j Q_{j \to i} = \pi_j Q_{j \to i} \min\{1, \frac{\pi_i Q_{i \to j}}{\pi_j Q_{j \to i}}\} = \pi_j P_{j \to i} \end{aligned}$$

Stochastic Optimization

Algorithms

L_{Metropolis-Hastings}

Remarks:

L_{Algorithms}

L_{Metropolis-Hastings}

Remarks:

• Q must be irreducible!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarks:

- Q must be irreducible!
- The convergence rate depends heavily on the auxiliary distribution Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ
- Q must be irreducible!
- The convergence rate depends heavily on the auxiliary distribution Q.

ション ふゆ マ キャット マックシン

• The algorithm is derivative-free.

- Q must be irreducible!
- The convergence rate depends heavily on the auxiliary distribution Q.

- The algorithm is derivative-free.
- Convergence can be exponentially slow.

- Q must be irreducible!
- The convergence rate depends heavily on the auxiliary distribution Q.

- The algorithm is derivative-free.
- Convergence can be exponentially slow.
- Can have low complexity per iteration, depends on Q.

- Q must be irreducible!
- The convergence rate depends heavily on the auxiliary distribution Q.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

- The algorithm is derivative-free.
- Convergence can be exponentially slow.
- Can have low complexity per iteration, depends on Q.
- π can be known up to a constant.

- Q must be irreducible!
- The convergence rate depends heavily on the auxiliary distribution Q.

- The algorithm is derivative-free.
- Convergence can be exponentially slow.
- Can have low complexity per iteration, depends on Q.
- π can be known up to a constant.
- Optimization is just one application of the MH algorithm.

1 Introduction

- Motivation
- Markov chains
- Stationary distribution
- Mixing time

2 Algorithms

Metropolis-Hastings

Simulated Annealing

Rejectionless Sampling

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

-Simulated Annealing

Consider running MH with $\pi \propto \exp(f(x)/T)$. What value of T to use?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

-Simulated Annealing

Consider running MH with $\pi \propto \exp(f(x)/T)$. What value of T to use?

For large T - rapid mixing time, but π^* is almost uniform.

-Simulated Annealing

Consider running MH with $\pi \propto \exp(f(x)/T)$. What value of T to use?

For large T - rapid mixing time, but π^* is almost uniform.

For small T - π^* is highly concentrated on the maximum, but there can be (exponentially) long mixing time.

Consider running MH with $\pi \propto \exp(f(x)/T)$. What value of T to use?

For large T - rapid mixing time, but π^* is almost uniform.

For small T - π^* is highly concentrated on the maximum, but there can be (exponentially) long mixing time.

The idea behind *simulated annealing* - start with high T, then decrease it slowly over time.

Consider running MH with $\pi \propto \exp(f(x)/T)$. What value of T to use?

For large T - rapid mixing time, but π^* is almost uniform.

For small T - π^* is highly concentrated on the maximum, but there can be (exponentially) long mixing time.

The idea behind *simulated annealing* - start with high T, then decrease it slowly over time.

-Simulated Annealing

While simulated annealing is not a homogeneous process, if T changes slow enough it is a close approximation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

-Simulated Annealing

While simulated annealing is not a homogeneous process, if T changes slow enough it is a close approximation.

One can show that for finite/compact spaces simulated annealing with $T_i = \frac{1}{C \ln(T_0+i)}$ converges to the global optimum.

-Simulated Annealing

Online demo - http://www.youtube.com/watch?v=iaq_Fpr4KZc

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Counter-example: On the blackboard.

1 Introduction

- Motivation
- Markov chains
- Stationary distribution
- Mixing time

2 Algorithms

- Metropolis-Hastings
- Simulated Annealing
- Rejectionless Sampling

-Rejectionless Sampling

If we are at a local maxima or a high probability state, we might reject any proposal with high probability. This is very wasteful.

-Rejectionless Sampling

If we are at a local maxima or a high probability state, we might reject any proposal with high probability. This is very wasteful.

ション ふゆ マ キャット マックシン

The idea - sample directly the next *accepted* state.

-Rejectionless Sampling

If we are at a local maxima or a high probability state, we might reject any proposal with high probability. This is very wasteful.

ション ふゆ マ キャット マックシン

The idea - sample directly the next *accepted* state.

This only works for discrete problems such that $Q(x_0 \to x)$ has a reasonable size support.

-Rejectionless Sampling

Define $w(x) = Q(x_0 \to x) \cdot \min\{1, \frac{\pi(x)Q(x \to x_{i-1})}{\pi(x_{i-1})Q(x_{i-1} \to x)}\}$ the probability to chose and accept x.

-Rejectionless Sampling

Define $w(x) = Q(x_0 \to x) \cdot \min\{1, \frac{\pi(x)Q(x \to x_{i-1})}{\pi(x_{i-1})Q(x_{i-1} \to x)}\}\$ the probability to chose and accept x.

Define $W = \sum_{x} w(x)$. This is computable if the support of $Q(x_0 \to \cdot)$ is small and simple.

-Rejectionless Sampling

Define $w(x) = Q(x_0 \to x) \cdot \min\{1, \frac{\pi(x)Q(x \to x_{i-1})}{\pi(x_{i-1})Q(x_{i-1} \to x)}\}\$ the probability to chose and accept x.

Define $W = \sum_{x} w(x)$. This is computable if the support of $Q(x_0 \to \cdot)$ is small and simple.

The probability that x is the next accepted state in the MH run is w(x)/W. Use this to pick the next state instead of the regular iteration.

うして ふゆう ふほう ふほう ふしつ

Algorithm Rejectionless-MH

Input:
$$x_0$$
, π and Q .
for $i = 0 : N$ do
For $x \in supp(Q(x_i \to \cdot))$ compute $w(x)$,
 $w(x) = Q(x_0 \to x) \cdot \min\{1, \frac{\pi(x)Q(x \to x_{i-1})}{\pi(x_{i-1})Q(x_{i-1} \to x)}\}$
 $W = \sum_{x \in supp(Q(x_i,:))} w(x)$
Select x_{i+1} with probability $w(x)/W$
end for

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Algorithm Rejectionless-MH

Input:
$$x_0$$
, π and Q .
for $i = 0 : N$ **do**
For $x \in supp(Q(x_i \rightarrow \cdot))$ compute $w(x)$,
 $w(x) = Q(x_0 \rightarrow x) \cdot \min\{1, \frac{\pi(x)Q(x \rightarrow x_{i-1})}{\pi(x_{i-1})Q(x_{i-1} \rightarrow x)}\}$
 $W = \sum_{x \in supp(Q(x_i,:))} w(x)$
Select x_{i+1} with probability $w(x)/W$
end for

This can be much slower per iteration, but worth it if W is low enough.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ